Shiga Toxin Binding to Glycolipids and Glycans
نویسندگان
چکیده
BACKGROUND Immunologically distinct forms of Shiga toxin (Stx1 and Stx2) display different potencies and disease outcomes, likely due to differences in host cell binding. The glycolipid globotriaosylceramide (Gb3) has been reported to be the receptor for both toxins. While there is considerable data to suggest that Gb3 can bind Stx1, binding of Stx2 to Gb3 is variable. METHODOLOGY We used isothermal titration calorimetry (ITC) and enzyme-linked immunosorbent assay (ELISA) to examine binding of Stx1 and Stx2 to various glycans, glycosphingolipids, and glycosphingolipid mixtures in the presence or absence of membrane components, phosphatidylcholine, and cholesterol. We have also assessed the ability of glycolipids mixtures to neutralize Stx-mediated inhibition of protein synthesis in Vero kidney cells. RESULTS By ITC, Stx1 bound both Pk (the trisaccharide on Gb3) and P (the tetrasaccharide on globotetraosylceramide, Gb4), while Stx2 did not bind to either glycan. Binding to neutral glycolipids individually and in combination was assessed by ELISA. Stx1 bound to glycolipids Gb3 and Gb4, and Gb3 mixed with other neural glycolipids, while Stx2 only bound to Gb3 mixtures. In the presence of phosphatidylcholine and cholesterol, both Stx1 and Stx2 bound well to Gb3 or Gb4 alone or mixed with other neutral glycolipids. Pre-incubation with Gb3 in the presence of phosphatidylcholine and cholesterol neutralized Stx1, but not Stx2 toxicity to Vero cells. CONCLUSIONS Stx1 binds primarily to the glycan, but Stx2 binding is influenced by residues in the ceramide portion of Gb3 and the lipid environment. Nanomolar affinities were obtained for both toxins to immobilized glycolipids mixtures, while the effective dose for 50% inhibition (ED(50)) of protein synthesis was about 10(-11) M. The failure of preincubation with Gb3 to protect cells from Stx2 suggests that in addition to glycolipid expression, other cellular components contribute to toxin potency.
منابع مشابه
Endocytosis and intracellular transport of the glycolipid-binding ligand Shiga toxin in polarized MDCK cells
The glycolipid-binding cytotoxin produced by Shigella dysenteriae 1, Shiga toxin, binds to MDCK cells (strain 1) only after treatment with short-chain fatty acids like butyric acid or with the tumor promoter 12-O-tetradecanoylphorbol 13-acetate. The induced binding sites were found to be functional with respect to endocytosis and translocation of toxin to the cytosol. Glycolipids that bind Shig...
متن کاملGlycolipid Binding Preferences of Shiga Toxin Variants
The major virulence factor of Shiga toxin producing E. coli, is Shiga toxin (Stx), an AB5 toxin that consists of a ribosomal RNA-cleaving A-subunit surrounded by a pentamer of receptor-binding B subunits. The two major isoforms, Stx1 and Stx2, and Stx2 variants (Stx2a-h) significantly differ in toxicity. The exact reason for this toxicity difference is unknown, however different receptor bindin...
متن کاملPathogenesis of Shigella diarrhea: XVII. A mammalian cell membrane glycolipid, Gb3, is required but not sufficient to confer sensitivity to Shiga toxin.
Shiga toxin recognizes a galactose-alpha 1-->4-galactose terminal glycolipid, globotriaosylceramide (Gb3), in sensitive mammalian cells and is translocated by endocytosis to the cytoplasm, where it blocks protein synthesis. To determine if Gb3 is both required and sufficient for toxicity, Gb3 content in cells was altered by blocking key biosynthetic or degradative path enzymes with specific inh...
متن کاملEndocytosis from coated pits of Shiga toxin: a glycolipid-binding protein from Shigella dysenteriae 1
Evidence is presented that endocytosis is involved in the transport to the cytosol of the cytotoxin from Shigella dysenteriae 1, Shiga toxin, which acts by removal of a single adenine residue in 28-S ribosomal RNA. Inhibition of endocytosis by ATP depletion of the cells prevented toxin uptake. Exposure of HeLa S3 and Vero cells to toxin at low extracellular pH, where translocation to the cytoso...
متن کاملRole of lipid rafts in Shiga toxin 1 interaction with the apical surface of Caco-2 cells.
Enterohemorrhagic Escherichia coli producing Shiga toxins 1 and/or 2 have become major foodborne pathogens. The specific binding of Shiga toxin 1 B-subunit to its receptor, a neutral glycolipid globotriaosylceramide Gb(3), on the apical surface of colonic epithelium followed by toxin entry into cells are the initial steps of the process, which can result in toxin transcytosis and systemic effec...
متن کامل